C.U.SHAH UNIVERSITY Summer Examination-2016

Branch : B.Sc(Physics)

Subject Name : Introduction to Mathematical Physics and Classical Mechanics

-			
Semester :5	Date :21/04/2016	Time :02:30 To 05:30	Marks :70

Instructions:

Subject Code :4SC05MCC1

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1		Attempt the following questions:	(14)
C C	a)	Define: Fourier series.	01
	b)	Write expression of $\vec{\nabla} X \vec{f}$.	01
	c)	Write expression of $\nabla \varphi$.	01
	d)	What is orthogonal curvilinear coordinates?	01
	e)	Give condition for orthogonality.	01
	f)	Write expression of $div \vec{V}$.	01
	g)	Define: constraint.	01
	h)	Write applications of Fourier series.	01
	i)	What holonomic constraint?	01
	j)	What is non-holonomic constraint?	01
	k)	What is configuration space?	01
	l)	What is cyclic or ignorable coordinates?	01
	m)	Define: generalized coordinates.	01
	n)	What is phase space?	01
Attemp	ot any f	our questions from Q-2 to Q-8	
Q-2	v	Attempt all questions	(14)
C	a)	Explain multiplication of matrices with examples.	04
		Find an expression for ds^2 in curvilinear coordinates u, v and w. Then determine	05
	,	ds^2 for the spatial case of an orthogonal system.	
	c)	Determine Eigen values and Eigen vectors of $A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}$.	05
	,	Determine Eigen values and Eigen vectors of $A = \begin{bmatrix} 0 & 2 & 0 \end{bmatrix}$.	
Q-3		Attempt all questions	(14)
∀ -2	a)	Obtain Fourier's series for the expansion of $f(x) = x \sin x$ in the interval of	07
	a)	Obtain Fourier's series for the expansion of $f(x) = x \sin x$ in the interval of $-\pi < x < \pi$. Hence deduce that $\frac{\pi}{4} = \frac{1}{2} + \frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \cdots$.	07
		$-\pi < x < \pi$. Hence deduce $\tan \frac{\pi}{4} - \frac{\pi}{2} + \frac{\pi}{1.3} - \frac{\pi}{3.5} + \frac{\pi}{5.7} - \cdots$.	

Page 1 || 2

	b)	Find a series of sines and cosines of multiples of x. which represents $f(x)$ in the interval $x+x^2$ in the interval $-\pi < x < \pi$. Where $f(x) = 0$ when $-\pi < x \le 0$, $= \frac{\pi x}{4}$ when $0 < x < \pi$ and hence, deduce $\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$.	07
Q-4		Attempt all questions	(14)
ν.	a)	Develop expression of divergence in terms of orthogonal curvilinear coordinates.	07
		Develop expression of curl in terms of orthogonal curvilinear coordinates.	07
Q-5	,	Attempt all questions	(14)
		Develop Lagrange's equations of motion for conservative system.	07 07
	D)	Explain Lagrange's undetermined multipliers.	07
Q-6		Attempt all questions	(14)
-	a)	Discussa simple pendulum with moving support by using Hamilton's	07
		formulation.	
	b)	Discuss D'Alembert's principle.	07
Q-7		Attempt all questions	(14)
X '	a)	Write significance of Lagrangian formulation.	05
		Deliberate Rayleigh's Dissipation function.	05
	c)	Discuss kinetic energy of the double pendulum with suitable expression.	04
Q-8		Attempt all questions	(14)
Q-0	a)	$\begin{bmatrix} \cos\alpha & \sin\alpha \end{bmatrix} \begin{bmatrix} \cos\beta & \sin\beta \end{bmatrix} \begin{bmatrix} \cos\beta & \sin\beta \end{bmatrix}$	06
)	Attempt all questions If $A_{\alpha} = \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix}$ and $A_{\beta} = \begin{bmatrix} \cos\beta & \sin\beta \\ -\sin\beta & \cos\beta \end{bmatrix}$. So that	
		$A_{\alpha+\beta} = \begin{bmatrix} \cos(\alpha+\beta) & \sin(\alpha+\beta) \\ -\sin(\alpha+\beta) & \cos(\alpha+\beta) \end{bmatrix}, \text{ prove that } A_{\alpha}A_{\beta} = A_{\beta}A_{\alpha} = A_{\alpha+\beta}.$	
		$A_{\alpha+\beta} = \left[-\sin(\alpha+\beta) \cos(\alpha+\beta)\right]$, prove that $A_{\alpha}A_{\beta} = A_{\beta}A_{\alpha} - A_{\alpha+\beta}$.	
	b)	If $V = x^2 z \vec{i} - 2y^3 z^2 \vec{j} + xy^2 z \vec{k}$ then find $\nabla \cdot \vec{V}$ at the point (1, -1, 1).	04
		Find Curl $(\overrightarrow{\nabla} X \overrightarrow{f})$ of the following function $f = \frac{x \overrightarrow{i} + y \overrightarrow{j}}{x + y}$.	04
		x+y	

Page 2 || 2